ESCI 110: 2 s.h.

Introduction to Earth Sciences Programs

General introduction to each of the earth sciences disciplines and to college life. 2 hrs. lec. Offered in fall. Restricted to earth sciences majors.

ESCI 322: 3 s.h.

Environmental Hydrology

Theory and practice of quantifying hydrologic phenomena; field methods, data manipulation and environmental applications. 2 hrs. lec., 2hrs. lab.

Prereq: C- grade or higher in ESCI 221, ESCI 241or GEOG 230 and MATH 160.

ESCI 241: 4 s.h.

Meteorology (G2, L)

Atmospheric structure and motions; physics of weather processes; weather and motion systems. 3 hrs. lec., 2 hrs. lab. Offered in fall and in spring as

needed. Coreq or Prereq: MATH 161 or 163, and PHYS 131 or PHYS 231.

ESCI 340: 3 s.h.

Physical Meteorology

Distribution of meteorological variables in the atmosphere; governing principles in atmospheric science (gas laws, hydrostatic equilibrium, diffusion,

conservation of energy, mass and momentum); radiative transfer, cloud processes and atmospheric electrification. 3 hrs. lec. Offered in spring.

Prereq: ESCI 241 or PHYSatmospheric statics, vertical stability3ahrka@col@ffeerediagsfall. Prereq: ESCI 241. Coreq or Prereq: MATH 311.

ESCI 342 3 s.h.

ESCI 342: 3 s.h.

Atmospheric Dynamics I

Meteorological coordinate systems; equations of motion; geostrophic, gradient and thermal winds; kinematics; circulation, vorticity and divergence

theorems. 3 hrs. lec. Offered in fall. Prereq: ESCI 241. Coreq or Prereq: MATH 311.

ESCI 343: 3 s.h.

Atmospheric Dynamics II

Diagnostics equations, viscosity and turbulence; energy equations and transformations; numerical weather prediction; general circulation. 3 hrs.

lec. Offered in spring. Prereq: ESCI 342.

millersville university 2007 - 2008

ESCI 344: 3 s.h.

Tropical Meteorology

General circulation of the tropics; energy balance; boundary layer; cumulus convection; survey of tropical disturbances including tropical cyclones.

3 hrs. lec. Offered in fall of odd years. Prereq: ESCI 341, 342.

ESCI 347: 3 s.h. (G2)

Satellite Meteorology

Theory of weather satellites including orbital characteristics and signal receipt, synoptic weather interpretation, mesoscale features, precipitation

signatures, fog, wind shear, tropical weather systems. Offered in fall of even years. Prereq: ESCI 241; MATH 161 or MATH 163.

ESCI 348: 1 s.h.

Broadcast Meteorology

effect on the climate system; climate models; and the current state of climate observing networks and model validation. 2 hrs. lec.; 2 hrs. applications and analysis. Offered in spring. Prereq: ESCI 343 or ESCI 364.

ESCI 444: 4 s.h.

Meso- and Storm-Scale Meteorology

Study of high-impact events that threaten life and property. Microphysical and dynamic aspects of severe convective systems, mesoscale convective

complexes, 0.00y1and prope31 (e)0.1(soscay. Y)i. Ye00y1ectjet(soscaat)9.1(neakand)6,grplisoscyprope ware 10.8(at)9.1(nopropen

Physics of wind waves; turbulent fluxes at the air-sea interface; planetary boundary layers; low-frequency oceanic waves; storm surges; importance of the ocean for tropical climates; El-Niño-Southern Osc a0450rl mrierobpsdp

Ir39p:s.h.()]TJ 0 -1.1437 TD06 Tc -0.04(t)7(riTopsics)-(in(thc)6.7(Ear th58.3()-(Scie(nce)6.7se)-01(I)]TJ /T44 1 Tf 0 -1.3797 TD n45.8dgn45.8g o(n45.8()-(t)4.23ops)4.23i on45.8ofhcQuf534@offoci45.8or dig68.3()]TJ /T24 1 Tf 0 -1.6